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SUMMARY

In many environmental samples, the target population is distributed over space in a more or less continuous
manner, e.g., the waters of a lake or the trees in a forest. Attributes of such a population can be
conceptualized as a continuous function defined on the spatial domain of the population. Some attributes
(e.g.. water temperature) can be observed at a point; others (e.g., species diversity) can only be determined
over a finite extent or support region. A fixed-shape support with uniform weights leads to an unbiased
estimator of the population total; however, it may be impossible to maintain a fixed shape near domain
boundaries. From a purely formal standpoint, unbiasedness can be maintained by using diflerential weights
or by changing the shape of the support region near the boundary. Both of these procedures raise some
issues of interpretation that often are overlooked. We derive estimators that account for edge effects under
several support strategies. and identify some interpretation issues, using examples from forestry and
limnology. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many environmental or biological populations can be viewed as spatial populations, by which
we mean populations whose elements, be they points or objects, occupy fixed locations in a
bounded spatial matrix. Examples include all lakes in Maine, wadeable streams in Oregon, and the
Florida everglades. Attribuites of spatial populations can sometimes be determined at a point by a
measurement process that takes place at that point. For example, the concentration of a chemical
in lake water and the depth of a stream are measured at a point. Many. if not most, attributes
of spatial environmental populations require measurements taken over some neighborhood
surrounding a point, e.g.. any measure of a rate or density must be determined over some non-
negligible support. Nevertheless. these attributes can be conceptualized as continuous surfaces
defined on the domain of the population. For example. a measure of biomass per unit area or
stand density in forestry. or a2 measure of fish abundance or diversity in surface waters, must be
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4 D. L. STEVENS AND N. S. URQUHART

determined over some support region. but these quantities can be. and often are. represented as
surfaces or maps. The value of the surface at a point is the aggregate over a window surrounding
the point. We generate the surface by moving the window over the extent of the population
domain.

A common issue in sampling spatial populations is the selection of an appropriate sample area
or plot on which measurements are actually carried out, that is. the determination of the support
of the observation. A facet of this question is the appropriate support near an edge of the spatial
domain of a population where a plot might cross the boundary. It is well-known (Finney 1948;
Barret 1964; Fowler and Arvantis 1981: Gregoire 1982: Gregoire and Scott 1990) that inappro-
priate treatment of plots crossing the boundary can result in a discrepancy, sometime called edge-
effect bias, between the mean of the plot-level values and the mean of the population. In this
paper. we treat edge-effect bias as a special case of a more general problem, that of ensuring that
the mean of the plot-level values is the same as the mean of the population. We term this
requirement aggregation-unbiasedness. and derive a sufficient condition to ensure aggregation
unbiasedness. We examine several popular plot layouts in light of this condition. and illustrate
that it is sometimes easier to show the condition is satisfied than to establish unbiasedness
directly. We also investigate several techniques for applying that condition to one- and two-
dimensional resource domains.

2. AGGREGATION-UNBIASED RESPONSE DESIGNS

To introduce the notions. suppose R is some two-dimensional region, s is a point in R and z(s) is
an attribute expressed as a rate or density. e.g.. a measure of fish abundance as number of fish per
square meter of lake surface. or a measure of forest stand density as number of trees per hectare.
A desirable property of any such attribute is that its integral over R be equal to the true total over
R. If z(s) were fish abundance. expressed as fish/m? in a lake, then

./1 e z(s) ds

should equal the number of fish in the lake. If z(s) represents biomass per square meter in some

region R. then
f z(s) ds
R
should equal the total biomass in R.

If the field determination of the attribute value is an average over the plot. then on the surface
there would seem to be little problem, since both averaging and integration are linear operations.
Certainly, there is no problem if the size, shape, and orientation of the field plot is kept constant.
However, it is not possible to do so for a bounded region. a feature of most real situations. A
problem arises along a boundary when a plot, whose location is determined by a point, straddles
the boundary (e.g., Finney 1948; Fowler and Arvantis 1981; Gregoire 1982). Either we adopt the
Procrustean solution of redefining the boundary of R to fit the shape of the plot. we move the plot
or modify its shape, or we introduce an analytic correction. All of these options have been used
(Chhikara 1994; Gregoire and Scott 1990; Harrison and Dunn 1993; Scott and Bechtold 1995;
Moisen et al. 1995). All raise the issue of potential bias, especially if edge conditions are
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SAMPLING CONTINUOUS DOMAINS 15

substantially different from interior conditions. or if R is of a shape with a large perimeter to
area ratio.

Much of the statistical literature has treated this problem from the perspective of finite
population sampling by treating the plot as a sample unit, with the population then consisting of
a finite number of sample units. However, a development from the perspective of sampling points
from a continuum has some advantages. and that is the viewpoint taken here. Sometimes called
point-sampling. this approach is mentioned in the statistical literature (e.g., Yates 1960) and in
the applied sampling literature (e.g.. Grosenbaugh 1958). Cordy (1993) has published a continu-
ous version of the Horvitz-Thompson theorem. and Campbell (1993) has investigated spatial
support for samples from a continuum. Stevens (1997) has developed sampling designs that are
directed explicitly to continuous spatially distributed populations. In this paper, we use that
conceptual viewpoint to address some questions of plot shape, in particular. the impact of
changing plot shape or size near a boundary.

Our conceptual viewpoint is that we are trying to infer properties of a continuous surface z(s).
which we will do by selecting points from the continuum that is the domain of the function z.
However, the perspective of sampling from a continuous universe also provides the theoretical
framework for sampling discrete populations distributed over space. One of the major problems
in sampling such a population is obtaining an adequate frame. The populations are finite, but
obtaining a list or catalog of all population elements is frequently prohibitively expensive or
impractical. and probably not a good idea in any case. Forest sampling is a good example:
sampling a stand of trees by labeling every tree in the stand, and then selecting from the list of
labels is feasible only for relatively small stands. Furthermore, the population almost certainly
has some spatial pattern. and random sampling from a list does not lead to a straightforward way
to disperse the sample over space.

There are two conceptually separate and distinct design activities involved here. One design
effort is determining what to measure. count. or observe given that we are at some point in the
population domain. and how to combine or synthesize the measurements, counts. or obser-
vations collected. This effort is response design: the process of deciding what to measure and how
to measure it; of defining and giving substance to the quantity or quantities we associate with the
point. The other design activity is sampling design: the process of specifying how and where to
select population units or points on the response surface. The response at these points will be
used to estimate attributes of the response surface, which, if we have done the response design
correctly, will bear some known relationship to the attributes of the population of real interest.

These two processes are conceptually distinct, but often are confused in practice. The task of
finding suitable and efficient ways to sample a spatial environmental population by exploiting its
spatial component is greatly simplified if we keep these two processes operationally distinct. The
benefit of doing so is that we can develop efficient and practical response designs that exploit the
local characteristics of the population, and develop efficient sampling designs that exploit the
regional characteristics of the population. We then appeal to sampling theory to establish design-
unbiasedness of proposed estimators of the response surface parameters, and appeal to the
response design to establish the link between the response surface parameters and population
parameters.

To formalize the concepts. we assume that the population we wish to describe exists within
some domain R. a subset of one. two. or three dimensional Euclidean space. and that || R]|, the
measure (length. area, or volume) of R, is non-zero. Some populations of environmental interest
are naturally viewed as continuous surfaces, e.g.. a chemical concentration within a lake, or the
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16 D. L. STEVENS AND N. S. URQUHART

elevation of a terrestrial region. Others are more akin to point-like collections of discrete objects,
e.g.. the trees in a forest. Our approach covers both extremes: in the continuous case, we take the
population to be an integrable function z(r) defined on R. In the case of discrete objects located at
the p.oints Ly by, ty with values z,. z,....z,. we take the population as the generalized
function

‘ N
()= z8(t — 1),

where 6(¢) is the Dirac delta function. (The Dirac delta function is a generalized function. also
called a distribution. with the properties that (1) = 0. t # 0, and

o() dr = 1.

See Richards and Youn (1990). for a discussion of distributions.) For the discrete case. we will
also need the generalized identity function

N
i() = Z o(t —1;). discrete population
1, otherwise

In either case, we interpret

/}; () dt = z

as the total of the population over R. Our objective is to estimate z, and the mean value
#, = z7/IIR|l. This is a quite general objective, as estimates of variances, proportions, and
distribution functions can also be formulated as estimates of integrals over R. For example. the
distribution function for z(s) over R is defined as

F(x) = l{s € R: z(s) < x}I/IIR]l.

Expressed as an integral.

P;(X) = A I{:iz(:)sx)(s) d5/||R||,

where I ,(X) is the indicator function for 4 defined as
1 xe A
I1,(x)= ’ . .
%) [ 0. otherwise
Note that in even the discrete case. we are interested in the average spatial density of z, not the
per element average.so that space is an intrinsic aspect of our objective. In the forest example. z;
might be the basal area of tree i, and we would be interested in the average basal area per acre of
the forest. not in the average basal area of the trees in the forest. Space is also an intrinsic part of
our strategy to estimate zrand y_. in that we will do so via a sample s, $3,...,8, drawn from R.
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SAMPLING CONTINUOUS DOMAINS 17

Let D(s) C R be some neighborhood of support around a point s such that all population
elements in D(s) are used in determining the value of the response surface at 5. For example. if we
were sampling trees, D(s) might be the intersection of the area covered by the stand with a circle of
fixed radius centered on s. If we were sampling benthic communities, D(s) might be specified by
the number, spatial arrangement, and depth of the bottom samples taken at a site. We call D(s)
the plot configuration: It is the particular arrangement of shape. orientation, and extent over
which measurements are taken. Often. D(s) is simply the plot associated with s. However, there
are some tcchniques discussed in the environmental sampling literature where D(s) is more
general than a simple plot. An example is variable-radius point sampling in the forestry literature
(Grosenbaugh 1958; Schreuder er al. 1993) in which D(s) becomes a finite point set of tree
locations.

We are explicitly allowing the plot configuration to change with the location s. In particular,
the plot configuration near the boundary may be different from the plot configuration in the
interior of R. For example. let C(s) be a circle centered on s. D(s) might be the entire circle in the
interior of R but be some other shape. e.g., C(s)N R, near a boundary of R. In Figure 1, for
example, the plot configuration might be the shaded areas at points s; and s,.

We suppose that the measurement process on D can be carried out so that the resulting sample
value is a faithful representation of the underlying surface. In practice, the sample value of the

Figure 1. Plot configuration examples. The shaded regions around points s; and s, show possible plot configurations. We
assume in this paper that inferences about R use only points within R, such as s, and s,. No observation would be
collected at s, even though its nominal plot intersects R
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18 D. L. STEVENS AND N. S. URQUHART

response at the point is usually calculated as an average or similar aggregation of observations
taken along a transect, at some regular grid of points covering D, or as an average over some
collection of discrete units within D (e.g.. all trees larger than some minimum size). For generality
of presentation, such finite sums will be replaced with an integral, so that the sample value at s
will have the form

Ip) = /R ID(S)(t)z(t)g(s, 1) dz. (1)

where g(s, 1) is a weighting or aggregation function that provides the prescription for aggregation
over D(s). and 7 (x) is the indicator function for the set 4 defined as

. 1. xeA
L) = lO, otherwise *
We assume that g(s. f) > 0. and that g(s. ) vanishes for 7 outside D(s). The integral form allows us
to treat both the continuous and discrete cases simultaneously. inasmuch as in the discrete case,
(1) becomes

i) = > (t)gls. 1) )

4eD(s)

The aggregation function g(s, ) is the weight given the population element at ¢ when it is included
in the response surface at s. We allow g to depend on both s and 7 because some response designs
in use. e.g., the mirage method in forestry (Gregoire. 1982). require such generality.

The response surface defined by our response design is Z,,. and is the population we will
actually sample. Inferences we make using a sample Z,(s)... .. Zp(s,) will be inferences about zj,,
not necessarily about z. Thus, the population we sample is defined and given substance by our
choice of response design and aggregation function. We can carry through some properties of the
underlying population to the response surface by making an appropriate choice of a response
design and an aggregation function. We cannot hope to preserve all characteristics of z, however.
For example, we would expect that the variance of Zj, both locally and regionally, to be smaller
than the variance of z. We need to place restrictions on the aggregation function g(s. ¢) to insure
that the response design preserves the population characteristic of interest. In particular. for our

objective of estimating z, we want
/ED(S) ds = f z(s) ds.
R R

a property which we label aggregation-unbiased. This property has been termed ‘design-
unbiased” (Gregoire and Monkevich 1994) or just ‘unbiased” (Scott and Bechtold 1995) and
analyzed as an aspect of sampling design. However, we view it as strictly a property of the
response design. inasmuch as it has nothing to do with where sample points are located. It can be
investigated and controlled independently of any sampling design that might be used to locate
points at which to sample.

In formulating this requirement. we have implicitly eliminated some options for response
designs. In particular. we have made an explicit choice to define the response only on the support
of those points that are in R. Point s, in Figure 1 would be used in the estimator, perhaps with
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SAMPLING CONTINUOUS DOMAINS 19

modified support because of its proximity to the boundary. No observation would be collected at
sample point s;, even though C(s,) intersects R. An alternative would be to include points s
outside of R but which have support circles that intersect R. We do not take this approach, but
instead assume that no observation is collected for s outside of R.

If our response surface has the aggregation-unbiased property, then any sampling design can
lead to a design-unbiased estimator via the Horvitz—Thompson theorem (Horvitz and Thompson
1952) or its continuous, infinite-population analog (Cordy 1993; Stevens 1997). In particular. if a
sample design were to select points 5|, ... . s, with inclusion probability densities n(s,), ..., n(s,).
then

XT3

zp(s)
T = Z‘;(T

is an unbiased estimator of z;. Moreover. a variance estimator can be obtained from formulas
given in Cordy (1993), Stevens (1997). or Stevens and Kincaid (1998). For example, the continu-
ous domain Horvitz—Thompson variance estimator is

5z 23(s;) s 5) —alsdn(s) |
Virlepr) = Z ng(j) ; ;[ m s,- syr(snds,) :|zD(si)zD(sj)' @
]'#"

The variance estimator depends only on the response surface observations, i.c., the aggregated
observations, and properties of the sampling design through the inclusion and pair-wise inclusion
probability functions evaluated at the sampling points. We stress thal even in the {inite, discrete
population case. there is no need to calculate inclusion or pair-wise inclusion probabilities for the
individual population units that get included in the sample. We need to evaluate inclusion
information only at sampling design points. Thus. for example, if we were estimating total tree
volume in a stand of trees. we do not need inclusion nor pair-wise inclusion probabilities for
individual trees. We need only know the inclusion and pairwise inclusion density functions at the
location of our sample points.

The concept dual to plot configuration is the inclusion field. The plot configuration for a point s
is the set of all points ¢ such that the value of z(¢) is used in calculating the aggregate value at s.
The inclusion field for a point ¢ is the set of all potential sample points s that include ¢ in their plot
configuration. Thus, the inclusion field for a point 7 € R is the region around  containing all s
such that ¢ is in the plot configuration of s. that is. a point s is in the inclusion field of ¢ if and only
if ¢is in the plot configuration of 5. If we regard D(s) as a set function mapping points in R to a
collection of subsets of R, the inclusion field for ¢ is the inverse image of D(s), that is. the inclusion
field is D™'(f) = (s|t € D(s)). This relationship can also be expressed in terms of indicator
functions as / () =1 p-1(5(s). We note that D~1(¢#) will either be an empty set. or else will have
non-zero length. area. or volume in contrast to D(s). which. in some circumstances. is a finite
point set. As we show later. the inclusion field is critical to the determination of the properties of
the response surface.

When we define a response design, we can choose to define the plot configuration D(s) for every
point s € R or the inclusion field D~!() for every point ¢t € R (or at least at every ¢ where there is a
population element). The two approaches are two faces of the same coin. We can use whichever is
most convenient since defining one implicitly defines the other. Both approaches have been used:
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20 D. L. STEVENS AND N. S. URQUHART
‘point-sampling” as discussed by Grosenbaugh (1958) is based on specifying D~!(#): Kershaw
(1964) and Grieg-Smith (1964) recommend quadrats positioned by randomly located points to

sample vegetation.
To find conditions on g(s, ¢) so that

/;ED(S) ds = /;'[RID.S((t)z(t)g(s. 1) dt ds = zq,

we use the identity / D(,)(t) = Ip-1(y(9). and interchange the order of integration to obtain

fR fR ID(s)(t)Z(t)g(s, Ndids= /R /R ID_I(,)(s)z(t)g(s, Ndids = /R z(t) g(s. 1) ds du.

D-i(n

It follows that for

/’;ZD(s) ds =z,

for arbitrary z(-), we must have that

g(s, ) ds=1.
D-\(1)

More generally, suppose that y and z are two variables defined on R, and let y,(s) and Z(s) be
defined by (1). If y(r) = h(z(#)). and h is a non-linear function, then in general. y, # h(Zp).
because integration does not preserve non-linear relationships. Thus, the choice of plot
configuration has an impact on the observed relationship. Moreover, even in the linear case,
where (1) = Byi(t) + B,z(2). the plot configuration can impact the relationship. Applying (1). it
follows that

Vp(s) = By /R I (i(n)g(s. 1) dt + B, fR Iny=(Dg(s, ) dt = B, /; ()i(t)g(s, 1) dt + B,zp(s). (4)
S,
Thus, the linear relationship with , # 0 is independent of plot configuration if and only if
f i(Dg(s, 1y de = 1.
D(s)
which becomes

f gs, ) de =1
D(s)

in the continuous case or

Y gy =1

1,€D(s)
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SAMPLING CONTINUOUS DOMAINS 21

in the discrete case. If we set g(s. 1) = 0 for s outside D~'(), then the requirement to preserve
mean values and to preserve linear relationships is that g(s, 1) be doubly stochastic, that is,

/ iDg(s,Hde =1
R
and

/I;g(s,t) ds=1.

If the relationship between y and z is subject to noise, or if observations have a noise com-
ponent, than any analysis of the effect of aggregation on associations between variables should
take that noise into account. See. for example, Robinson (1950). Yule and Kendall (1950), or
Openshaw and Taylor (1979). Equation (4) shows that even in the perfect world of no noise. there
can be an aggregation effect.

If g does not depend on s in the sense the weight assigned to the population element at 1 € D(s)
is the same for any point s. the unbiasedness requirement becomes

Im)(’)
DY)l

Thus, in this case we can get aggregation-unbiasedness by taking the aggregation function as the
reciprocal of the size of the inclusion field. This result is sufficiently counter-intuitive that it is
worth stressing: We achieve aggregation-unbiasedness through scaling observations within the
plot by the size of their inclusion fields. not by the plot size. For example. if we were sampling
trees using a circular plot in the interior of R, and a plot determined by the intersection of the
circle with R near the boundary, we do not achieve unbiasedness merely by giving those plots
near the boundary less weight. The aggregation function would be tree-specific rather than plot-
specific. Moreover. the only way we can avoid a location-specific weight is for 1D-Y(0)] to be
constant. Thus. there can be a considerable advantage to selecting D(s) so that [[D~!(1)| is
constant. or conversely, specifying the response design by specifying a constant-measure D).
If. in addition. g is doubly stochastic. this implies that | D(s)|| = [[D~}()]| = || DI, i.e.. the plot
configuration and the inclusion field have equal and invariant area.

In some instances, we may be interested in more than just z;. Environmental assessments, for
example, may also require an estimate of the proportion of R that meets (or fails to meet) a
requirement on Z,, of the form Z,, > z,. Because the variance of Z;, depends on all of z, D(s), and
g(s. £), such an assessment depends critically on our choice of response design and aggregation
function. A response design with the property that |D(s)|| = [[D~!(s)|| = |D|| will ensure that the
response design does not unduly influence the assessment by introducing local variability in z,
resulting from variation in || D(s)|l.

A sufficient set of conditions for |[D(s)]| = [[D~'(9)|l = ||D]| is that D(s) be both translation
congruent (1 € D(s) & ¢+ h € D(s + h)). for any h) and radially symmetric (1 + & € D(s) &
t — h € D(s)). for any h). These conditions imply that D~!(r) = D(t), and are satisfied for plot
configurations that are common geometrical shapes such as squares, rectangles. or hexagons. The
radial symmetry condition is not satisfied by a triangular plot configuration, and the presence of
edges inevitably guarantees that translation congruence fails to hold.

gs. ) = (%)
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22 D. L. STEVENS AND N. S. URQUHART

There are cases where either R has no boundaries. or we can construct a topology on R to
eliminate edges. If R is the entire surface of the earth, then spherical-squares, -rectangles. or
-hexagons satisfy the translation congruent and radially symmetric conditions. If R is a
|-dimensional domain. e.g.. a stream segment. we can eliminate ends by forming R into a circle
(cf.. Fuller 1970). If R is a rectangle. we can eliminate its boundaries by deforming it into a torus,
joining the top to the bottom edge and the left to the right edge. A plot that overlapped a boundary
of R would cross one or more seams. The corresponding field plot would be located by cutting the
torus along the seams. and mapping back to the plane. A plot crossing a seam would consist of
disconnected fragments. e.g., a plot crossing the right boundary would have a piece appearing on
the left boundary. Such constructions can be used to satisfy the theoretical requirements. but do
not provide practical field protocols.

3. LINEAR DOMAIN EXAMPLES

The interplay between plot configuration. inclusion field. and aggregation function is most easily
illustrated in the 1-dimensional case. The specifics of the examples are motivated by the sampling
of streams where the plot configuration is often a length of stream around a sample point, say a
fixed distance on either side of the point as at point s, in Figure 2. If the sample point happens to

Figure 2. Sample locations and support regions on a hypothetical stream network. D(s)) is symmetric about the
sample point; D(s,) is the same length as D(s,) but is asymmetric about the sample point, and D(s;) is truncated at a
downstream confluence

Copyright © 2000 John Wiley & Sons, Ltd. Environmetrics 2000; 11: 13-41



SAMPLING CONTINUOUS DOMAINS 23

be near a confluence with another stream. so that the plot would cross the confluence, some
limnologists have kept the entire plot on one reach to avoid habitat changes that might occur at
the confluence and that could obscure the interpretation of the observation. We will look at three
strategies for doing this: (1) slide the plot back onto the reach so that a constant length of stream
is sampled for all points (see point s, in Figure 2); (2) truncate the plot at the endpoints of the
reach. resulting in shorter plot lengths for those points ncar the endpoints (see point s,
in Figure 2). and (3) reflect the plot back onto itself when it overlaps the end of the stream
reach. The reflect strategy is the 1-dimensional analog of the mirage method used in forestry
(Schmid-Haas 1969: Gregoire 1982; Gregoire and Monkevich 1994) and discussed in Section 4.2.
Physically, of course. the truncate strategy and the reflect strategy result in the same portion of
the stream being sampled. The differences between the two lie in the aggregation function. and
possibly in the on-site protocol, as discussed below.

Suppose the stream reach we wish to sample has length L, which we represent by an interval on
the real line, so that R = [0, L]. For the ‘slide’ strategy. the plot configuration has constant length.
and is given by

[0. 24]. 0<s<d
Dy()=3[s—0.54+6), d<s<L-9.
[L-26,L], L-6<s<L

In contrast. for the “truncate’ and ‘reflect” strategies, the plot configuration at s is the interval of
width 26 centered on s intersected with R. It is truncated at both the upper and lower ends of the
reach and thus is given by

[0.5s+ 6], 0<s<9d
Dips)={[s-6,5+6], 6<s<L-96
[s—4, L], L-6<s< L.

The upper half of Figure 3 shows plots of s versus the upper and lower endpoints of Dy, (s) and
Dx(s). For any s in R, the plot configuration is the projection onto the r-axis of the vertical line
segment between the two endpoint curves. A schematic of this operation is shown in the upper
left of Figure 3. where a vertical line is drawn upward from the s-axis. and the segment between
the two endpoint curves is projected onto the t-axis. Conversely. the inclusion field is the
projection onto the horizontal axis of the horizontal line segment between the two curves. For
example. from the plot of the endpoints for the slide option. it can be seen that

[0.¢+ 9], 0<1<26
Dy()=1[t-681+0d), 26<t<L-25
[t — o, L) L-20<t1<L.

The lower half of Figure 3 shows the length of the inclusion field for the three strategies. For
example, as can be read from the lower right plot in Figure 3. the length of the inclusion field for
the truncate or reflect strategy is given by

t+94, 0<1r<é
ID7R(DI = { 2. S<s<L-6
0+L—t, L-d<it<L.
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An aggregation function that gives aggregation-unbiasedness for the slide and truncate
strategies can be obtained by taking

I (D)
D(s)
L) = ——2
860 = D=1
so that
/ gls,nds=1.
JD-(1)

Schematics of these functions are given in Figure 4. In neither case is the aggregation
function doubly stochastic. so linear relationships are not preserved by either the slide or truncate
strategy.

The reflect strategy folds the portion of the plot that extends beyond the stream reach back
onto the reach, with the intention that the portion of the stream that is twice-covered should
receive twice the relative weight of the remainder of the plot. Figure 4 also has a schematic of this
aggregation function: the function takes on the value 1/§ in the two hatched regions: 1/26 in the
central box; and vanishes elsewhere. This aggregation function is doubly stochastic, so both mean
values and linear relationships are preserved. Application of the aggregation function could be
accomplished analytically. during the data analysis stage. or, for some kinds of measurements,
accomplished by a modification of the field procedure. For example, suppose the response is
abundance of benthic organism. and the standard protocol calls for organisms to be collected at a
rate of & benthic grabs per meter. If the collection intensity were changed to 2k grabs per meter in
the reflected portion of the plot (Figure 5). and every grab received the same weight in the
aggregation. then z,, would be aggregation-unbiased.

It is possible to obtain constant length inclusion field, but at thc expense of constant
length support. This alternative would be represented by interchanging the roles of D(s) and
D~Y(1) in the slide strategy. The circular topology mentioned in Section 2, together with a
symmetric support interval, gives constant plot length and constant inclusion field length. but is
not an attractive field protocol. This has the disadvantage of giving a support that is the
composite of two segments of R that may be widely separated, and would seem to be of little
practical utility. In the stream sampling context, this option connects the upper end of a
headwater reach to the confluence end. and potentially results in the disparate mixture of habitats
we tried to avoid.

4. TWO-DIMENSIONAL EXAMPLES

In this section, we discuss several examples in which the domain of the resource is two-
dimensional. even though the resource itself may be finite. e.g., a forest occupies area, but the
trees within the forest constitute a finite population. First, we identify plot configurations,
inclusion fields. and aggregation functions for two widely used techniques, line-intercept
sampling and tree-concentric sampling in forestry. We then examine some techniques that ensure
either constant area plot configuration or constant area inclusion field.
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End of stream reach
Sample point

Collection intensity
k points/m

- Nominal plot length >

Figure 5. One way to apply the reflect strategy to a linear resource. The portion of the nominal plot extending beyond the
end of the stream reach is folded back onto the reach. The collection intensity is doubled within the portion of the reach
covered by the folded plot

4.1. Line-intercept sampling

Line-intercept sampling (LIS) (Kaiser 1983: Thompson 1992: Gregoire and Monkevich 1994) is a
method of selecting a sample from a population of objects, usually called particles. which are
scattered over some planar region R. The particles may be such things as trees, shrubs. animal
dens, logging debris. roads, animal tracks, etc. In our view of LIS, each particle has an associated
index location ¢, such as the particle centroid. We will consider the particle selected if the index
location is selected. The method is applied by locating a line L at random in R. and including in
the sample all those particles P, intersected by the line. Some characteristic z; is measured for each
particle selected. and the object is to estimate Z or p_.

Several variations of the method use different line placements or different specific definitions of
‘intersection’. One of the simplest methods (Thompson 1992, pp. 225~230) selects particles if they
are intersected by a line passing through R perpendicular to some baseline that spans R (see
Figure 6). The particle located at ¢, is sclected by any point that falls in the perpendicular
projection of the particle onto baseline. so that D~!(r)) is just that perpendicular projection. For a
point s on the baseline, D(s) consists of all #, such that P, is intersected by the perpendicular line
through s. i.e.. D(s) is a finite point set of index locations. Referring to Figure 6, we have that
D(s)) = {1,}. D(sy) = {t5.1,}. and D(s,) is the empty set. It follows from (1) and (5) that

b6 =2 ||D-1i(ri)||

1,€D(s)

tay

is an aggregation unbiased response surface. in this case. a I-dimensional “surface’.

The inclusion field for this method, and for line-intercept sampling in general, depends on
attributes of the population unit located at 1;, e.g.. on the shape and orientation of P,. If we want
to achieve aggregation-unbiasedness. the aggregation function must be population dependent. In
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baseline

e — L
D(t) Dt

D)

Figure 6. An application of line intercept sampling. R is projected onto the baseline of length L, as are the particles within

R. Particles are selected if they are intercepted by lines perpendicular to the baseline at sample points, so that D~'(z)

is the segment on the baseline in which a point must fall to select P;. Thus, 5, selects P,, s, selects P; and P,, and s, fails
to select a particle

turn, this implies that we have no hope of obtaining a doubly stochastic aggregation function, so
that relationships will inevitably be distorted by this method of sampling.

Suppose the projection of R onto the baseline has length L. and a sample is selected by picking
n points independently and uniformly distributed over [0.L]. For such a sampling design,
(s) = nfL. and n(s;, 5,) = n(n — 1)/L?. so that

2 N Ips) L& z;
‘ =; n(s,3 =a 2 X DI

J=1 1,€D(s)
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is an unbiased estimator of z,, with variance estimator from Equation (3) given by

n
n—1

Y Gpls) — 1)
j=1

These are the same estimators given by Thompson (1992, p. 226), however, we have obtained them
from a very different perspective. An advantage of our viewpoint is that we can easily change
sampling designs without having to derive new estimators. For instance, we could use a linear
analog to a randomized tessellation stratified design (Stevens 1997) to ensure that sample points
were spread more or less evenly across the baseline. or use a variable probability design to
concentrate sample points in regions where we knew or suspected a high particle concentration.
Either of these designs would likely be more efficient than simple random sampling, and would
entail no additional analytic effort from our perspective.

Kaiser (1983) and Gregoire and Monkevich (1994) discuss another version of line-intercept
sampling, where L is a line of fixed length / located at random in R. Their discussions cover
alternatives where the orientation 8 of L is taken as fixed or random. We consider here only the
case of fixed 6. Extension to the random case is straightforward. In this version of line intercept
sampling, ‘intersects’ means either (1) L passes completely through P,, or (2) an arbitrarily
specified endpoint of L falls within P,. In our terminology, the method specifies that the set
D“(t,.) for the particle P; located at #; consists of all points s such that a line L centered on s with
fixed orientation @ intersects P,. Figure 7 illustrates application of the intersection rule and
determination of the inclusion field using the convention that a particle is intersected if L passes
through the particle or the left endpoint of L is within the particle. Particles P, and P, are
intersected by the lines at 5, and s, . respectively. while P; is not intersected by the line at s;. The
hatched area around P, is the region in which a point must fall in order to select Py. i.e.. it is
D“(t4). Kaiser (1983) provides a derivation of the computations necessary to determine
1D~ (@)1I.

Transects that cross the boundary. such as those near Py. can be treated in two different ways.
Let C(¢) be the area around the particle at 7 that covers the locations of all lines that intersect the
particle. If the particle is in the interior of R, then C(¢) is the inclusion field, but if ¢ is near a
boundary, so that C(f) overlaps the boundary. some other choice is necessary. Kaiser (i983)
suggests translating the transect segment outside the boundary some distance to the left or right
along the boundary. This has the effect of moving the part of C(¢) that falls outside the boundary
back into R in such a way as to maintain the area of the inclusion field. In Figure 7. the inclusion
field using this option would consist of the portion surrounding Ps plus the cross-hatched portion
above. The area of D~!(¢) depends only on particle size and shape, not particlc location. so
ID~HOI = IC@)II. Setting

_ ID(S)(z)
&6-1) = 5=

in (1) gives an aggregation-unbiased response surface.
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Figure 7. Line intercept sampling of particles by randomly placed lines. Particles are intercepted if the line passes

completely through the particle, or the particle covers the left endpoint of the line. Particles P, and P, are intercepted by

the lines at s, and s,, respectively, while Py is not intercepted by the line at 5. The hatched area around P, is D7(1,). The
hatched area near P illustrates the reflection strategy; the cross-hatched area illustrates the translation strategy

Gregoire and Monkevich (1994) showed how to achieve aggregation-unbiasedness by reflecting
a transect crossing the boundary back along itself. Their approach sets D~'(r) = C(/) N R. and
sets the aggregation function equal to

1 D(,)(t)
I

if the particle is intersected by both the transect and its reflected portion, and equal to

ID(:)(’)
ICI
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otherwise. In Figure 7. C(t,) overlaps the boundary. D~1(¢,) is the portion of C(z,) inside R, and

2
5. 1) = ——
869 = e
in the hatched portion of D~!(z,). Clearly.
g(s.)ds=1,

D)

so they obtain an aggregation-unbiased response surface.

4.2. Tree-concentric sampling

A sampling method sometimes used in forestry applications assigns each tree a circle. centered on
the tree. with radius that may depend on some property of the tree. For example. a frequently
used option makes the area of a tree circle proportional to the basal area of the tree. A point at s
sclects all trees such that s falls within the tree’s circle. If C(z;) denotes the circle of radius rt)
centered on the tree at ¢, then in our terminology. this method takes D"(t,.) = C(1;) for trees in
the interior of R. Several variations have been used to handle trees whose circles intersect the
boundary. See Schreuder er al. (1993. pp. 207-301) for a summary some of the methods. Gregoire
and Scott (1990) compared the bias and mean square error for several of the methods. Here, we
examine two of the methods. the tree-concentric method (Gregoire and Scott 1990) and the
mirage method (Schmid-Haas 1969: Gregoire 1982). The tree-concentric approach takes
D~!(1;) = RN C(1;) and achieves aggregation-unbiasedness by setting

ID(,)(I)
D=1l

The mirage method also uses D~'(1;) = RN C(t,), but uses a different aggregation function,
derived by reflccting the portion of C(r;) that falls outside of R about the boundary. The reflected
portion falls back into C(z). and partitions the area of D~!(z,) into two disjount pieces, labelled
Ay(1) and Ay(t) in Figure 8(a). Clearly, [[C(1)ll = ll4, I + 2| 4,|l. Aggregation-unbiasedness
results from setting

g, 1) =

1
wcagn: S €40
— 2
gls.0) = Feon s€ Az(l) :
0, otherwise
so that

_ 1401+ 214,01 _ |
fo-l(,,) g0 =""rwmr "

The procedure is applied in the field by reflecting the point s across the boundary to obtain a
point ¢, and using the fact that s is in A,(z) if and only if both s and &' are in C(¢). Thus, in
determining Z(s). tree i is counted once if s is in C(,). and counted again if § is in C(t). For
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(b)
Figure 8. The mirage technique for determining g(s, ). In (a), the portion of the tree circle at ¢, that overlaps the boundary
of R is reflected across the boundary. This partitions the tree circle within R into two regions A4,(1}) and Ay(r). The
reflected image of any point in A,(z)), such as s, in (b), falls outside the tree circle at 7;, whereas the reflection of any point
in A,(2), such as 5,, falls inside in the tree circle at ¢,

example. the reflection s, of the point s, in Figure 8(b) Ifalls in C(z), so the tree at ¢; is counted
twice in forming Z,(s,). Conversely. s, is outside of 4,. 52 is outside of C(#,), and tree i is counted
only once for zp(s,).

For the special case where the radius of a tree’s circle is the same for every tree, then
D(s) = C(s) N R. In this case, the mirage method yields a doubly stochastic aggregation function.
This follows from the observation that s € 4,(r) & 1 € A,(s) so that

/ g5, 1) dr = O+ 2460
D(s)

(O]
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4.3. Plot configurations or inclusion fields with invariant area

For the purpose of illustration, only the elementary case of a region R with a long straight
boundary will be explored here. Real boundaries will be more complex. of course, but this case
lets us investigate the consequences of several strategies, and suggests some guidelines that might
be developed to handle more complex boundaries. First. consider the two-dimensional analog of
the truncate strategy for linear resources: Use a fixed plot shape, and determine the support as the
intersection of R with the plot. Further., let the plot be a circle with radius r centered on s. so that
D(s) consists of all points in R that are within a distance r of 5. Then D~!(f) = D(¢). that is. a point
tis within a distance r of s if and only if s is within a distance r of . In this case, g(¢) depends only
on the distance between ¢ and the boundary. If we pick a coordinate system so that the y-axis
coincides with the edge of R. and R lies to the right of the y-axis (see Figure 9) then the distance
from 7 = (¢, ¢,) to the edge is just 7,. and

o) L <y
2ot — 24+ rsinT ()T
gls. 1) = N ( )
t
Dis)
1 4 ?
nr? x= 7

The solid line in Figure 10 shows [|[D~!(¢ fr.0)l|/nr? as a function of ¢,. This curve is the two-
dimensional analog of the left-hand portion of the length of inclusion field curve for the truncate
strategy (lower right plot in Figure 3). and has similar shape. (We will discuss the dashed curve
shortly.)

A fixed-area plot configuration can be obtained by taking D(s) as the locus of points in R
closest to s with area nr2. This is the converse of the enlarged-tree-circle strategy suggested by
Barret (1964). which forces D~1(¢) to have a constant area. The fixed-area plot is the intersection
of R with a circle centered on s, with radius p = p(s) satisfying

2
= ”—g- +5.4/p2 =52+ p*sin”’ (%) for s, <r. (6)

Unfortunately, this strategy only solves the problem of a variable plot area. The shape of the
inclusion field for a point ¢ = (1, ty) can be determined by using (6) to calculate p(s,) for a rdnge
of values for s, and then plotting the curve determined by

[

5, = VP = (5, = 1)

Both the shape and the area of the inclusion field vary as t moves away from the boundary.
Figure 11 sketches plot configurations and inclusion fields for several distances from the
boundary. The dotted regions are the inclusion fields at ¢, where ¢ is the point at the large cross.
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©.0) !

Figure 9. A portion of a region R with a long, straight boundary, showing the placement of a coordinate system. The
hatched area is the inclusion field at the point ¢ = (tx,ty)

Several examples of plot configurations (open figures bounded by solid line) are also sketched in
the figure for various locations along the boundary of the inclusion field. The area of D~!(¢) as a
function of distance from the boundary is sketched as the dashed curve in Figure 10. This strategy
is a 2-dimensional generalization of the slide strategy for linear resources. Note the similarity of
the dashed curve in Figure 10, and the left-hand portion of the length-of-inclusion-field curve for
the slide strategy (lower left in Figure 3).

There is a strategy such that both D(s) and D~!(t) have constant area. If we examine the dashed
curve in Figure 10, we note that regions close to the boundary have smaller than average inclusion
fields. and regions from about 2r/3 to 2r have larger than average inclusion fields. Heuristically,
this occurs because the support strategy of using the closest points to s tends to ‘replace’ points in
the circular region around s but outside of R with points that are inside R but further from the
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Figure 10. Variation in the area of the inclusion field as a function of distance from region boundary for two plot
configuration strategies. Compare with the corresponding 1-dimensional cases in Figure 3

(d)

(©

Figure 11. A plot configuration strategy that gives constant support area but variable inclusion field area. The dotted
area is the inclusion field at the cross; the open figures are support regions for several points on the boundary of the
inclusion field
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boundary. Thus. the strategy tends to distort the support region in a direction away from the
boundary. This suggests that a strategy that replaces points outside of R with points inside of R but
the same distance away from the boundary might achieve both uniform plot area and uniform
inclusion field area. and in fact. this is the case.

Figure 12 illustrates the process of clipping off the ‘ears’ of a circular support region that fall
outside of R, and sticking them back onto the support inside of R. The piece outside of R is cut
into thin strips. Each strip is then placed inside R so that it just touches the edge of the circle at the
same distance from the boundary of R. The point ¢ outside of R is replaced by the point t inside
of R. Clearly, the area of the D(s) formed by the intersection of the circle with R plus the two
‘ears’ is constant. regardless of the location of s. Moreover, D~'(¢) = D(¢). again in the sense that
the inclusion field at r has the same shape and area as the plot configuration at ¢. That shape is not
invariant over all of R. however. In the interior of R. D~1(r) = D(r) = C(¢), while for a point on

do A

(@) ()
() (d)

S =
%
T 7
o 87 ’
t=)
Figure 12. An example of the construction of plot configuration that leads to constant area D(s) with the property that

D1(t) = D(r). The portions of a circular support region that overlap the boundary of R are clipped off and repositioned
inside of R so as to preserve distance-to-boundary relationships
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the boundary of R, D(f) and D~\(¢) are semi-ellipses. Thus. near the boundary. area is preserved,
but the shape of the plot configuration changes.

To show that D~!(¢f) = D(t), we need to show that t = D(s) & s € D(?). Referring to Figure 12,
t € D(s) if either [Is — ]| < r or ¢ is the image of a point ¢ given by

2
£ = (1.1, %7 = (t, = 5.))

with ||ls — ¢|| < r, where the sign of the radical is positive or negative as 7, is greater or less than s,
respectively. If ||s — 7| < r, then s € D(1). If [|s — 7| < r. then again s € D(¥). since

rells—1fl= \/(t, +5 .+ 05— (1, P = (s, — 1 = =S

The inclusion fields resulting from applying this strategy are sketched in Figure 13 for several
choices of distance from the boundary. The point 1 = (¢,.t,) is located at the large cross. and -
DY) is the shaded region. We have sketched plot configurations (the unshaded figures) for
several choices of points on the boundary of each D~!(r): in each case, note that the boundary of
the plot configuration goes through :.

(@t =0 (b)t, = 0.25 )t = 05 (At =1
x
Figure 13. A plot configuration strategy that gives constant support area and constant inclusion field arca. The dotted

area is the inclusion field at the cross; the open figures are support regions for several points on the boundary of the
inclusion field
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5. SUMMARY AND DISCUSSION

A common objective in sampling a spatial environmental population is an inference about the
mean or total of some attribute per unit area (Scott and Bechtold 1994, p. 55; Kaiser 1983). In
sampling forest, we would be estimating forest properties, not tree properties. Qur averages would
be expressed in terms of a mean per unit area. not in a mean per tree. In sampling streams. we would
be describing the population in terms of stream miles, not in terms of numbers of stream segments.
Results would be expressed as an average per unit length, e.g.. average number of pools per mile of
stream, not as an average number of pools per stream segment. We noted that our perspective is
that the population we are making inferences about (and hence sampling) is the continuous
response surface. not the underlying unaggregated population. We believe that in most inferences
about a spatial environmental population. this is the most logically consistent perspective.

If we were solely concerned with sampling a finite population, e.g., interested in tree properties
rather than forest properties, then we need only compute inclusion probabilities for individual
trees to apply a Horvitz—Thompson estimator to get unbiased estimates of totals. From this
standpoint, there is no concern with aggregation bias, since we never aggregate to plot-level
values. The entire analysis can be conducted at the level of tree-specific values. However, this
perspective also commits one to a limited range of forest properties that depend on characteristics
of individual trees. Descriptors that rely on characteristics of a neighborhood surrounding a tree
are subject to an aggregation-effect bias. These descriptors include understory properties.
vegetation classification. forest-type classification. and stocking. Similar comments apply to any
spatial environmental population that can also be viewed as a collection of individuals.
Attributes of the population that require a non-negligible support should be viewed and sampled
as a continuous surface.

We have shown that some characteristics of finite populations of individuals can be preserved
through aggregation by appropriate choice of a response design, and have given examples of
application of two general techniques for doing so: one involving the translation of part of the
plot and one involving reflection. Both can achieve doubly stochastic aggregation functions. so
that mean values and linear relationships can be preserved.

We illustrated the interplay between plot configuration, inclusion field, and aggregation
function, and showed how to obtain an aggregation function that gave an aggregation-unbiased
response surface. For a given plot configuration. the aggregation function is not unique. For
instance, the only difference between the reflect and truncate strategies for linear resources is the
choice of aggregation functions. The distinction between the two is that the reflect aggregation
function is doubly stochastic. and the truncate function is not.

There are other aspects to consider. Aggregation-unbiasedness is an adequate criterion only if
one is interested solely in estimating means or totals. In many cases, interest extends beyond those
simple statistics. For instance. if the response is a rate or density. such as stocking in forestry (trees/
acre). or an indicator of ecological condition, such as an index of biological integrity (IBI). one
may be more interested in estimating the proportion of R that meets some criterion, e.g.. stocking
is at least k trees per acre, or the IBI is greater than ¢. Some of the differences in aggregation-
unbiased response designs will show up in the local smoothness of the response surface. which will
in turn show up in the tails of the distribution function of the response surface. Local variability
can be an artifice of the response design. influenced mostly by the size of the plot, but possibly also
by the shape and orientation. In particular. the use of smaller plots near an edge may inflate
variability in an area that is already more variable because it is near an interface. In these cases.
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one should try to maintain equal area plots and inclusion fields. In those cases where the
complexity of the boundary makes that difficult, one may opt to incur some (aggregation) bias in
order to keep the plot configuration size constant.

Note that this is not a question of (sampling-design) bias. The response design determines the
response surface. and proper sampling design and design-based analysis will ensure unbiased
estimation of response surface characteristics. The question is the correspondence between the
response surface and characteristics of the resource population.

The importance of maintaining equal area inclusion fields depends on the relationship between
the surface z(-). the tangible, physical property that z represents, and the purpose or objective of
the sampling. For instance, let z(-) be a measure of understory vegetation density. and suppose we
wish to produce a map showing the spatial pattern of vegetation density. Before we can exhibit
that map, we must settle on how to define the density at every point in R in both conceptual and
operational terms. In particular, we must specify what ‘vegetation density’ means near a well-
defined. sharp physical boundary. We must address such questions as the appropriate measure-
ment protocols when some portion of a field plot is a paved parking lot. The correct approach
depends to some extent on the intended use of the density surface. If we plan on using the density
to construct an estimate of the total vegetation mass. then the density near the boundary should
depend strictly on the area within R. and results on unbiased aggregation from this paper pertain.
On the other hand, if the density is to be used to investigate the relationship between density and
canopy cover. it may be appropriate for the density near the boundary to incorporate
characteristics of areas outside of R. Such a density estimate will be ‘biased’ in the sense that the
integral over R will not give the total biomass in R, but it may give a better picture of density as an
attribute of the population on R.

We note that one of the advantages claimed for reflection-based methods is ease of field
application (Gregoire 1982; Gregoire and Monkevich 1994). We recognize that a complex field
protocol will be prone to errors, and do not discount the importance of a straightforward field
procedure. However. in those cases where edge makes up a substantial portion of the population,
and interest extends beyond totals, then plot a configuration that does not introduce an
additional source of variation can be important. We have shown that the ‘ears’ plot configuration
does satisfy the requirement of maintaining equal area plots and inclusion fields. Along a straight
boundary, the ears plot can be approximated with straight lines fairly quickly. and even a crude
approximation should serve to eliminate most of the edge effect. Along a complex boundary, the
ears plot may be difficult to use; however. the principle of replacing area outside the boundary
with an equal amount of area inside the boundary, and the same distance from the boundary,
should serve to give a reasonable approximation.

We discussed some response designs where the plot configuration depends on local character-
istics of the base population. e.g.. line-intercept sampling and variable-radius tree-concentric
sampling. In each of these cases, the plot configuration cannot be interpreted as a connected
subset of R, but degenerates to a finite point set whose points index the location of population
elements. These designs can lead to aggregation-unbiased response surfaces, but are not suitable
for exploring relationships between multiple response variables. Because the plot configuration
depends on population characteristics, no aggregation function can be doubly stochastic. so any
relationship other than proportionality inferred from the aggregated observation will be
influenced by the choice of plot configuration.

A final point to consider is that the notion of aggregation-unbiasedness, and the methods
described herein to achieve it, depend very much on the boundary of R being known. Even if we
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have an aggregation-unbiased response surface on R. that same surface will not in general be
aggregation-unbiased for a region R’ that is a proper subset of R.
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